Recap of last lecture (big picture)

- **goal**: match query image to a stored library of reference images

- **cannot use raw pixels**:
  - too many
  - too unstable (lighting, shadow, occlusion, scale change, perspective change...)

- **three step plan**:
  1. identify interest points (easy to identify structures): visual words
  2. extract local feature descriptors (characterises interest points): word definitions
  3. match images based by comparing sets of feature descriptors
Recap of last lecture *(edge detection)*
Recap of last lecture \((\text{edge detection})\)

\[ I(x) \]
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur

$I(x) \otimes g_\sigma(x)$
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur $\rightarrow$ differentiate

$I(x) \otimes g_\sigma(x) \rightarrow \frac{d}{dx}$
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur $\rightarrow$ differentiate $\rightarrow$ locate extrema

$I(x) \otimes g_{\sigma}(x) \frac{d}{dx}$
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur $\rightarrow$ differentiate $\rightarrow$ locate extrema $\rightarrow$ threshold

$I(x) \otimes g_\sigma(x) \quad \frac{d}{dx}$
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur $\rightarrow$ differentiate $\rightarrow$ locate extrema $\rightarrow$ threshold

$I(x) \otimes g_\sigma(x) \frac{d}{dx}$
convolution
lowpass filter

frequency
Recap of last lecture (edge detection)

Image $I(x)$

- Gaussian blur $\otimes g_\sigma(x)$
- Differentiate $\frac{d}{dx}$
- Locate extrema
- Threshold
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur $\rightarrow$ differentiate $\rightarrow$ locate extrema $\rightarrow$ threshold

$I(x) \otimes g_\sigma(x)$

convolution lowpass filter

$\frac{d}{dx}$

convolution highpass filter

$\propto$ $\propto$ frequency $\propto$ $\propto$
Recap of last lecture (edge detection)

image $\rightarrow$ Gaussian blur $\rightarrow$ differentiate $\rightarrow$ locate extrema $\rightarrow$ threshold

$I(x) \otimes g_\sigma(x) + \frac{d}{dx}$

convolution lowpass filter

highpass filter

$X$

= bandpass filter
Recap of last lecture *(edge detection)*

Image → Gaussian blur → differentiate → locate extrema → threshold

\[ I(x) \xrightarrow{\otimes g_\sigma(x)} \frac{d}{dx} \]

Convolution
Lowpass filter
Highpass filter

\[ X \]

Frequency

\[ \text{bandpass filter} \]

Linear operations are commutative and associative
Recap of last lecture (edge detection)

linear operations are commutative and associative
Recap of last lecture (edge detection)

linear operations are commutative and associative

\[ I(x) \circ \frac{d}{dx} \circ \bigotimes g_\sigma(x) \]

image \(\rightarrow\) Gaussian blur \(\rightarrow\) differentiate \(\rightarrow\) locate extrema \(\rightarrow\) threshold

\[ I(x) \circ \bigotimes g_\sigma(x) \rightarrow \frac{d}{dx} \bigotimes g_\sigma(x) \]

Convolution lowpass filter \(\rightarrow\) highpass filter \(\rightarrow\) bandpass filter
Recap of last lecture (edge detection)

- Image \( \rightarrow \) Gaussian blur \( \rightarrow \) differentiate \( \rightarrow \) locate extrema \( \rightarrow \) threshold.

\[
I(x) \quad \otimes g_\sigma(x) \quad \frac{d}{dx} \quad \text{lowpass filter} \quad \text{highpass filter}
\]

\[
\text{convolution} \quad \text{convolution}
\]

\[
\text{linear operations are commutative and associative}
\]

- Image \( \rightarrow \) blur with derivative of Gaussian

\[
I(x) \quad \otimes \frac{d}{dx} g_\sigma(x)
\]
Recap of last lecture (edge detection)

linear operations are commutative and associative

image $\rightarrow$ blur with derivative of Gaussian

$$I(x) \quad \otimes \quad \frac{d}{dx} g_\sigma(x)$$
Today

• Is there a correct level of blur for edge detection?

• Edge detection in 2D
  – Canny edge detection
  – Marr Hildreth edge detection

• Moving beyond edges
  – why edges aren’t sufficient for computer vision
Discrete approximation of the Gaussian filter

N = number of pixels in 1D image

N = number of pixels in 1D image

Continuous Gaussian

Discrete approx

Trade-off between comp. complexity and high-frequency artifacts
Truncation of the Gaussian filter

N = number of pixels in 1D image
K = truncated approximation

peak height

continuous Gaussian

peak height
1000

discrete approx

1 2 3 4 5 6 7 8 9 ...K

Trade-off between comp. complexity and high-frequency artifacts
Truncation of the Gaussian filter

N = number of pixels in 1D image
K = truncated approximation

⇒ Trade-off between computational complexity and high-frequency artifacts
Convolution

\[ G_{\sigma}(x, y) \]

\[ \otimes \]

\[ I(x, y) \]

\[ S(x, y) = G_{\sigma}(x, y) \otimes I(x, y) \]
$S(x, y) = G_\sigma(x, y) \otimes I(x, y)$
Is this the right thing to do?

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) \]
Is this the right thing to do?

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v) \]
Convolution

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v) \]
Convolution

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v) \]

convolution = correlation when the filter is symmetric

e.g. isotropic Gaussian
Convolution

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v) I(u, v) \]
Convolution

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v) \]
Convolution

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v) I(u, v) \]
Convolution

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v) I(u, v) \]
What’s the computational cost of this naïve approach?

\[
S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v)
\]
What’s the computational cost of this naïve approach?

The computational cost of this approach is given by:

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v) \]

The computational cost is then:

\[ \text{computational cost} = NMK^2 \]

NB. \[ K = 2n+1 \] in your notes.
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) \]

![Filter](image)

\[ \otimes \]

![Image](image)

\[ I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v) \]
Can we speed this up when the filter is separable?

\[
G_\sigma(x, y) = g_\sigma(x)g_\sigma(y)
\]

\[
\begin{array}{ccc}
  a & b & c \\
  d & e & f \\
  g & h & i \\
\end{array} = \begin{array}{ccc}
  a' & b' & c' \\
  a & b & c \\
  b' & d & e \\
  c' & c & e \\
\end{array}
\]

\[
I(x, y)
\]

\[
S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v G_\sigma(x - u, y - v)I(u, v)
\]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[
\begin{array}{ccc}
  a & b & c \\
  d & e & f \\
  g & h & i \\
\end{array}
\]

\[
\begin{array}{ccc}
  a' & b' & c' \\
  b' & d' & e' \\
  c' & d' & e' \\
\end{array}
\]

\[
\begin{array}{ccc}
  a & a & b & c \\
  d & e & f \\
  g & h & i \\
\end{array} \otimes
\begin{array}{ccc}
  a' & a' & b' & c' \\
  b' & b' & d' & e' \\
  c' & c' & e' & f \\
\end{array}
\]

\[ I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u \sum_v g_\sigma(x - u)g_\sigma(y - v)I(u, v) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = \sum_u g_\sigma(x - u) \sum_v g_\sigma(y - v) I(u, v) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x) g_\sigma(y) \]

\[ I(x, y) \odot g(y) \odot I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \otimes g(y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \otimes G_\sigma(x, y) = \begin{pmatrix} a' & b' & c' \\ a & b & c \\ a & b & c \end{pmatrix} \otimes \begin{pmatrix} a' & a & b & c' \\ a & b & c & d \\ a & b & c & d \end{pmatrix} \]

\[ = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix} \]

\[ \rightarrow g(y) \otimes I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_{\sigma}(x, y) = g_{\sigma}(x)g_{\sigma}(y) \]

\[ I(x, y) = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \]

\[ G_{\sigma}(x, y) \otimes I(x, y) = \begin{pmatrix} a' & a & b & c \\ b' & d & e & f \\ c' & g & h & i \end{pmatrix} \]

\[ S(x, y) = G_{\sigma}(x, y) \otimes I(x, y) = g_{\sigma}(x) \otimes g_{\sigma}(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \text{ filter} \]

\[ g(y) \otimes I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \otimes g(y) \otimes I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \quad = \quad \begin{pmatrix} c' \\ b' \\ a' \end{pmatrix} \quad \begin{pmatrix} g(y) \otimes I(x, y) \end{pmatrix} \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \ast g(y) \ast I(x, y) = S(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \quad \overset{\otimes}{\longrightarrow} \quad g(y) \otimes I(x, y) \quad \overset{\otimes}{\longrightarrow} \quad S(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \Rightarrow g(y) \otimes I(x, y) \Rightarrow S(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[
\begin{array}{cccc}
  a & b & c \\
  d & e & f \\
  g & h & i \\
\end{array}
\]

\[
\begin{array}{cccc}
  a' & b' & c' \\
  a' & a & b & c \\
  b' & b & d & e \\
  c' & c & d & e \\
\end{array}
\]

\[ g(y) \otimes I(x, y) \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[
\begin{array}{ccc}
  a & b & c \\
  d & e & f \\
  g & h & i \\
\end{array}
\]
\[
\begin{array}{ccc}
  a' & b' & c' \\
  b' & c' & d' \\
  c' & d' & e' \\
\end{array}
\]

\[ \triangleright \]

\[ I(x, y) \otimes g(y) \otimes I(x, y) = S(x, y) \]

\[ G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_{\sigma}(x, y) = g_{\sigma}(x)g_{\sigma}(y) \]

\[ I(x, y) \quad \Rightarrow \quad g(y) \otimes I(x, y) \quad \Rightarrow \quad S(x, y) \]

\[ S(x, y) = G_{\sigma}(x, y) \otimes I(x, y) = g_{\sigma}(x) \otimes g_{\sigma}(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ \begin{array}{ccc}
  \text{image} & \otimes & \text{filtered image} \\
  I(x, y) & \rightarrow & S(x, y) \\
 \end{array} \]

\[ S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]
Can we speed this up when the filter is separable?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[
\begin{array}{ccc}
\text{filter} & & \\
\begin{array}{ccc}
 a & b & c \\
 d & e & f \\
 g & h & i \\
\end{array} & \Rightarrow & \\
\begin{array}{ccc}
 a' & b' & c' \\
 b' & d & e \\
 c' & c & f \\
\end{array}
\end{array}
\]

\[
I(x, y) \quad \otimes \quad g(y) \otimes I(x, y) \quad \Rightarrow \quad S(x, y)
\]

\[
S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y)
\]
What is the new computational cost?

\( G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \)

\[
\begin{array}{cccc}
  a & b & c \\
  d & e & f \\
  g & h & i \\
\end{array} \quad \mapsto \quad \begin{array}{cccc}
  c' & b' & a' \\
  a' & b' & c' \\
  b' & c' & a' \\
\end{array}
\]

\[
N \text{ by } M \text{ pixel image} \quad \mapsto \quad \text{K dimensional vectors} \quad \mapsto \quad \text{filtered image}
\]

\[
S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y)
\]
What is the new computational cost?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

\[ I(x, y) \otimes G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \]

new computational cost is \( = 2N MK \)
What is the new computational cost?

\[ G_\sigma(x, y) = g_\sigma(x)g_\sigma(y) \]

old computational cost was = \( NMK \)

new computational cost is = \( 2NMK \)

\( S(x, y) = G_\sigma(x, y) \otimes I(x, y) = g_\sigma(x) \otimes g_\sigma(y) \otimes I(x, y) \)

new computational cost is = \( 2NMK \)

old computational cost was = \( NMK^2 \)
Aperture problem
Which way do you think the edge is moving?
Aperture problem
Problem with edge-features

Edges can only tell us about the component of motion perpendicular to the edge
What about corners?
What about corners?