Lecture 4: corner and blob detection

Dr. Richard E. Turner (ret26@cam.ac.uk)

October 21, 2013
Recap of last lecture: 2D Edge detection

Canny

• compute gradient: $\nabla S(x, y)$

• compute gradient directions: $\hat{n} = \frac{\nabla S(x, y)}{|\nabla S(x, y)|}$

• find local maxima of gradient magnitude $|\nabla S(x, y)|$ in direction \hat{n}
Recap of last lecture: 2D Edge detection

Canny

- compute gradient: $\nabla S(x, y)$

- compute gradient directions: $\hat{n} = \frac{\nabla S(x,y)}{||\nabla S(x,y)||}$

- find local maxima of gradient magnitude $|\nabla S(x, y)|$ in direction \hat{n}

equivalent to finding $\frac{d^2}{dr^2}S(x, y) = 0$ where r is distance in direction \hat{n}
Recap of last lecture: 2D Edge detection

Canny

- compute gradient: $\nabla S(x, y)$

- compute gradient directions: $\hat{n} = \frac{\nabla S(x,y)}{|\nabla S(x,y)|}$

- find local maxima of gradient magnitude $|\nabla S(x, y)|$ in direction \hat{n}

 equivalent to finding $\frac{d^2}{dr^2}S(x, y) = 0$ where r is distance in direction \hat{n}

Marr-Hildreth:

- find $\nabla^2 S(x, y) = \left(\frac{d^2}{dr^2} + \frac{d^2}{dq^2} \right) S(x, y) = 0$

 where r is in direction of edge and q is perpendicular
Recap of last lecture: 2D Edge detection

Canny

- compute gradient: \(\nabla S(x, y) \)

- compute gradient directions: \(\hat{n} = \frac{\nabla S(x, y)}{|\nabla S(x, y)|} \)

- find local maxima of gradient magnitude \(|\nabla S(x, y)| \) in direction \(\hat{n} \)

Equivalent to finding \(\frac{d^2}{dr^2}S(x, y) = 0 \) where \(r \) is distance in direction \(\hat{n} \)

Marr-Hildreth:

- find \(\nabla^2 S(x, y) = \left(\frac{d^2}{dr^2} + \frac{d^2}{dq^2} \right) S(x, y) = 0 \)

- where \(r \) is in direction of edge and \(q \) is perpendicular

Additional \(\frac{d^2}{dq^2}S(x, y) \) term introduces noise
Recap of last lecture: 2D Edge detection

Canny: slower, more reliable

- compute gradient: \(\nabla S(x, y) \)

- compute gradient directions: \(\hat{n} = \frac{\nabla S(x, y)}{|\nabla S(x, y)|} \)

- find local maxima of gradient magnitude \(|\nabla S(x, y)| \) in direction \(\hat{n} \)

equivalent to finding \(\frac{d^2}{dr^2} S(x, y) = 0 \) where \(r \) is distance in direction \(\hat{n} \)

Marr-Hildreth: fast, noisy

- find \(\nabla^2 S(x, y) = \left(\frac{d^2}{dr^2} + \frac{d^2}{dq^2} \right) S(x, y) = 0 \)

- where \(r \) is in direction of edge and \(q \) is perpendicular

additional \(\frac{d^2}{dq^2} S(x, y) \) term introduces noise
Recap of last lecture: 2D Edge detection

- accelerated edge detection:
 - truncated tails of filter
 - leveraged separability of filter

- discovered we need more than edges: aperture problem

 \rightarrow corners
Correlation

Sums are just over elements in the patch

\[c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}} \]
Correlation

Sums are just over elements in the patch

\[c(x, y) = \frac{\sum_{u} \sum_{v} P(u, v) I(x + u, y + v)}{\sqrt{\sum_{u} \sum_{v} P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}} \]

\[P(u, v) \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Correlation

Sums are just over elements in the patch

\[c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}} \]
Correlation

Sums are just over elements in the patch

\[
c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}}
\]

\[
c(x, y) = \frac{p^T I}{|p||I|}
\]
Correlation

Sums are just over elements in the patch

\[
c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}}
\]

\[
c(x, y) = \frac{p^r I}{|p||I|}
\]
Correlation

Sums are just over elements in the patch

\[
c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}}
\]

\[
c(x, y) = \frac{p^T I}{|p||I|} = \cos(\theta)
\]
Correlation

Sums are just over elements in the patch

\[c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}} \]

\[c(x, y) = \frac{p^T I}{|p||I|} = \cos(\theta) \]

\[I' = \alpha I + \beta \quad \text{brightness} \]
Correlation

Sums are just over elements in the patch:

\[c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}} \]

Alters length of vector, not angle.

\[c(x, y) = \frac{p^T I}{|p||I|} = \cos(\theta) \]

Contrast: multiplicative, alters length of vector, not angle.

\[I' = \alpha I + \beta \]
Correlation

Sums are just over elements in the patch:

\[
c(x, y) = \frac{\sum_u \sum_v P(u, v)I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}}
\]

\[
c(x, y) = \frac{p^T I}{|p| |I|} = \cos(\theta)
\]

Contrast: multiplicative alters length of vector, not angle.

Contrast:

\[
I' = \alpha I + \beta
\]

brightness
Correlation

Sums are just over elements in the patch

\[c(x, y) = \frac{\sum_u \sum_v P(u, v) I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}} \]

\[c(x, y) = \frac{p^T I}{|p||I|} = \cos(\theta) \]

Contrast: multiplicative alters length of vector, not angle

\[I' = \alpha I + \beta \leftarrow \text{brightness} \]
Correlation

Sums are just over elements in the patch

\[
c(x, y) = \frac{\sum_u \sum_v P(u, v) I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}}
\]

\[
c(x, y) = \frac{p^T I}{||p|| ||I||} = \cos(\theta)
\]

\[I' = \alpha I + \beta \]

Brightness alters angle

Contrast: multiplicative
Alters length of vector, not angle
Correlation: remove mean

Sums are just over elements in the patch:

\[
c(x, y) = \frac{\sum_u \sum_v P(u, v) I(x + u, y + v)}{\sqrt{\sum_u \sum_v P(u, v)^2 \sum_{u'} \sum_{v'} I(x + u', y + v')^2}}
\]

\[
c(x, y) = \frac{p^T I}{|p||I|} = \cos(\theta)
\]

\[
\tilde{I}(x, y) = I(x, y) - \langle I(x, y) \rangle
\]

Brightness: alters angle
Contrast: multiplicative
 alters length of vector, not angle

\[
I' = \alpha I + \beta \rightarrow \text{brightness}
\]
Correlation: cross-correlation

\[\tilde{c}(x, y) = \frac{\sum_u \sum_v \tilde{P}(u, v) \tilde{I}(x + u, y + v)}{\sqrt{\sum_u \sum_v \tilde{P}(u, v)^2 \sum_{u'} \sum_{v'} \tilde{I}(x + u', y + v')^2}} \]

\[\tilde{c}(x, y) = \frac{\tilde{p}^\top \tilde{I}}{||\tilde{p}|| \tilde{I}} = \cos(\theta) \]

brightness: alters angle

\[\tilde{I}(x, y) = I(x, y) - \langle I(x, y) \rangle \]

contrast: multiplicative
alters length of vector, not angle

\[I' = \alpha I + \beta \]

brightness
A signature of corners

\[c(x, y) \]
A signature of corners

$c(x, y)$
A signature of corners

\[c(x, y) \]
A signature of corners

c(x, y)
A signature of corners

\[c(x, y) \quad \tilde{c}(x, y) \]
A signature of corners

\[
c(x, y) \\
\tilde{c}(x, y)
\]
A signature of corners

\[c(x, y) \quad \tilde{c}(x, y) \]
A signature of corners

$c(x, y)$

$\tilde{c}(x, y)$
A signature of corners

\[c(x, y) \]

\[\tilde{c}(x, y) \]
A signature of corners

\[c(x, y) \quad \tilde{c}(x, y) \]
Summary

Correlating with

- **0D patch**: flat
- **1D patch** (edge): falls off quickly in one direction, constant in other
- **2D patch** (corners): peak at intersection, falls off quickly in all directions
- textural patches also result in peaks
Summary

Correlating with

- **0D patch**: flat
- **1D patch** (edge): falls off quickly in one direction, constant in other
- **2D patch** (corners): peak at intersection, falls off quickly in all directions
- textural patches also result in peaks

How can we use this fact for edge detection?
Summary

Correlating with

* 0D patch: flat

* 1D patch (edge): falls off quickly in one direction, constant in other

* 2D patch (corners): peak at intersection, falls off quickly in all directions

* textural patches also result in peaks

How can we use this fact for edge detection?

* match with template corners: computationally expensive
Summary

Correlating with

- **0D patch**: flat
- **1D patch** (edge): falls off quickly in one direction, constant in other
- **2D patch** (corners): peak at intersection, falls off quickly in all directions
- textural patches also result in peaks

How can we use this fact for edge detection?

- **match with template corners**: computationally expensive
- find points where **auto-correlation** falls off quickly in all directions
Corners as interest points

\[M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

\[I_x \leftrightarrow \frac{\partial I}{\partial x} \]
\[I_y \leftrightarrow \frac{\partial I}{\partial y} \]
\[I_x I_y \leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \]
Looking more closely at the matrix

First, consider an axis-aligned corner:

\[M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]

This means dominant gradient directions align with x or y axis.

Look for locations where both \(\lambda \)'s are large.

If either \(\lambda \) is close to 0, then this is not corner-like.

What if we have a corner that is not aligned with the image axes?
Looking more closely at the matrix

Since M is symmetric, we have

$$M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$$

$$Mx_i = \lambda_i x_i$$

The *eigenvalues* of M reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.
Responses to edges corners and flat regions

“edge”:
\[\lambda_1 >> \lambda_2 \]
\[\lambda_2 >> \lambda_1 \]

“corner”:
\[\lambda_1 \text{ and } \lambda_2 \text{ are large,} \]
\[\lambda_1 \sim \lambda_2; \]

“flat” region
\[\lambda_1 \text{ and } \lambda_2 \text{ are small;} \]

\[\text{cornerness}(x, y) = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]
What type of applications are corners useful for?

- Autostitch: photo-mosaic
- Matching objects taken with different cameras/viewpoints
What type of applications are corners useful for?

Autostitch: photo-mosaic
- works well

Matching objects taken with different cameras/viewpoints
- fails
Properties of Harris corners

Harris corners are rotationally invariant
But are they scale invariant?
Properties of Harris corners

Harris corners are rotationally invariant
But are they scale invariant?

All regions classified as edges
Properties of Harris corners

Harris corners are rotationally invariant
But are they scale invariant?

All regions classified as edges

Corner
Properties of Harris corners: need scale invariant features

Harris corners are rotationally invariant
But are they scale invariant?

All regions classified as edges

Corner