Non-linear Dimensionality Reduction

Rich Turner
Applications and reasons to study dimensionality reduction

modelling data on/near manifolds
- e.g. objects + transformations = non-linear manifolds

visualisation
- understanding structure in high-dimensional data

simple building blocks
- preprocessing/feature learning: reducing computational complexity improving statistical efficiency
- compose into complex models:
 - FA -> LGSSMs
 - GPLVM -> GPSSMs

Cunningham and Yu, Nature Neuro, 2014

Hinton and Salakhutdinov, Science, 2006
Dimensionality reduction: conceptual space

- Probabilistic modelling
- FA
- pPCA
- PCA
- Min reconstruction error
- Max variance
- Linear Gaussian
- Linear
- Max mutual information
- Embedding methods
- 2nd order statistics
Dimensionality reduction: conceptual space

- **PCA**
- **probabilistic modelling**
- **FA**
- **pPCA**
- **max mutual information**
- **embedding methods**
- **MDS**
- **ISOMAP**
- **min reconstruction error**
- **auto-encoders**
- **deep NN auto-encoder**
- **denoising auto-encoder**
- **noise-corrupted input**
- **map inference**
- **GP-LVM**
- **non-linear component models**
- **linear Gaussian**
- **2nd order statistics**
- **linear**
- **max variance**
- **linear**
- **RKHS feature expansion**
- **kernel-PCA**
- **multi-view GP-LVM**
- **IB-FA**
- **CCA**
- **non-linear non-parametric**
- **IB-FA CCA**
- **multi-view**
- **linear**
- **non-parametric**
- **non-linear**
- **non-linear**
- **non-parametric**
- **non-parametric**
- **kernel-PCA**
- **RKHS feature expansion**
- **non-Gaussian**
- **non-linear**
- **distances via local reconstruction weights**
- **LLE**
- **higher-order statistics**
- **distances via data-graph**
- **ISOMAP**
- **Laplacian eigenmaps**
- **spectral methods**
- **ICA**
- **dynamical GP-LVM**
- **LGSSM**
- **SFA**
- **time-series**
- **non-Gaussian**
- **MAP inference**
- **multi-view**
- **GP-LVM**
- **non-parametric**
- **non-linear**
- **non-parametric**
- **dynamical GP-LVM**
- **recognition models**
- **distances via local reconstruction weights**
- **LLE**
- **kernel-PCA**
- **RKHS feature expansion**
- **non-Gaussian**
- **non-linear**
- **distances via data-graph**
- **ISOMAP**
- **Laplacian eigenmaps**
- **spectral methods**

Further details on non-parametric, non-linear, non-Gaussian, and multi-view models are provided in the diagram.
Dimensionality reduction via distance preserving embeddings

original dataset
high-dimensional

\[d_{n,m}^{(y)} = ||y^{(n)} - y^{(m)}|| \]
Dimensionality reduction via distance preserving embeddings

Original dataset
High-dimensional

New dataset
Low-dimensional

\[\text{dim}(y) = D \quad \Rightarrow \quad \text{dim}(x) = K \]

\[d_{nm}^{(y)} = \| y^{(n)} - y^{(m)} \| \quad \approx \quad d_{nm}^{(x)} = \| x^{(n)} - x^{(m)} \| \]
Dimensionality reduction via distance preserving embeddings

\[\dim(y) = D > \dim(x) = K \]

\[d_{nm}^{(y)} = \| y(n) - y(m) \| \approx d_{nm}^{(x)} = \| x(n) - x(m) \| \]

embed by optimising new datapoints to match distances:

\[
\arg \min_{\{x(n)\}_{n=1}^{N}} \sum_{n < m} \| d_{nm}^{(y)} - d_{nm}^{(x)} \|
\]
Dimensionality reduction via distance preserving embeddings

original dataset
high-dimensional

new dataset
low-dimensional

\[
d^{(y)}_{nm} = \|y^{(n)} - y^{(m)}\| \approx d^{(x)}_{nm} = \|x^{(n)} - x^{(m)}\|
\]

embed by optimising new datapoints to match distances:

\[
\arg \min_{\{x^{(n)}\}_{n=1}^{N}} \sum_{n<m} \|d^{(y)}_{nm} - d^{(x)}_{nm}\|
\]
Dimensionality reduction via distance preserving embeddings

original dataset
high-dimensional

new dataset
low-dimensional

\[\dim(y) = D \quad > \quad \dim(x) = K \]

\[d_{nm}^{(y)} = \| y(n) - y(m) \| \quad \approx \quad d_{nm}^{(x)} = \| x(n) - x(m) \| \]

embed by optimising new datapoints to match distances:

\[\arg \min_{\{x^{(n)}\}_{n=1}^{N}} \sum_{n < m} \| d_{nm}^{(y)} - d_{nm}^{(x)} \| \]

PCA: Euclidean metric (squared error)
MDS: general distance metric e.g. ISOMAP

Tenenbaum et al
Science, 2000
Question:
Will MDS with Euclidean distances make sensible 1D embeddings of:

\[y_1, y_2, y_3 \]

\[x_1, x_2 \]

\[d^{(y)}_{nm} = \| y(n) - y(m) \| \approx d^{(x)}_{nm} = \| x(n) - x(m) \| \]

embed by optimising new datapoints to match distances:

\[\arg \min \sum_{n<m} \| d^{(y)}_{nm} - d^{(x)}_{nm} \| \]

PCA: Euclidean metric (squared error)
MDS: general distance metric e.g. ISOMAP

Tenenbaum et al
Science, 2000
Dimensionality reduction via distance preserving embeddings

Question:
Will MDS with Euclidean distances make sensible 1D embeddings of:

Desire:
PCA: Euclidean metric (squared error)
MDS: general distance metric e.g. ISOMAP

Tenenbaum et al
Science, 2000
Dimensionality reduction via distance preserving embeddings

original dataset
high-dimensional

new dataset
low-dimensional

Question:
Will MDS with Euclidean distances make sensible 1D embeddings of:

Desire:

embed by optimising new datapoints to match distances:

\[
\text{arg min} \sum_{n<m} ||d_{nm}^{(y)} - d_{nm}^{(x)}||
\]

PCA: Euclidean metric (squared error)
MDS: general distance metric e.g. ISOMAP

Tenenbaum et al.
Science, 2000
Dimensionality reduction via distance preserving embeddings

ISOMAP:
Geodesic distance via neighbourhood graph

Now target distances reflect desires

PCA: Euclidean metric (squared error)

MDS: general distance metric e.g. ISOMAP

$$d_{nm}^{(y)} = \| y(n) - y(m) \| \approx d_{nm}^{(x)} = \| x(n) - x(m) \|$$

Embed by optimising new datapoints to match distances:

$$\arg \min_{\{x(n)\}_{n=1}^N} \sum_{n<m} \| d_{nm}^{(y)} - d_{nm}^{(x)} \|$$

Tenenbaum et al Science, 2000
Dimensionality reduction via distance preserving embeddings

original dataset

- High-dimensional

new dataset

- Low-dimensional

ISOMAP:

Geodesic distance via
neighbourhood graph

\[
d^{(y)}_{nm} = \|y(n) - y(m)\|
\approx d^{(x)}_{nm} = \|x(n) - x(m)\|
\]

embed by optimising new datapoints to match distances:

\[
\arg \min_{\{x^{(n)}\}_{n=1}^N} \sum_{n<m} \|d^{(y)}_{nm} - d^{(x)}_{nm}\|
\]

PCA: Euclidean metric (squared error)

MDS: general distance metric e.g. ISOMAP

Tenenbaum et al

Science, 2000
Dimensionality reduction via distance preserving embeddings

- ISOMAP, Tenenbaum et al. Science 2000
- LLE, Roweis et al. Science 2000
- tSNE, Hinton and van der Maaten JMLR 2008

Original dataset

Geodesic distance via neighbourhood graph

New dataset

Bottom loop articulation
Top arch articulation

ISOMAP, Tenenbaum et al Science 2000
LLE, Roweis et al. Science 2000
tSNE, Hinton and van der Maaten JMLR 2008
Dimensionality reduction via distance preserving embeddings

Limitations (also strengths?)

- non-linear embedding-based methods require optimisation of new representation x ($N \times K$ parameters)
- works well for low-dimensional embeddings $K = 2$ or 3, but slow for higher dimensions
- does not provide quick way to map new data-points into new representation ($y^{(new)} \rightarrow x^{(new)}$ involves optimisation)
- does not provide a way for mapping out of reduced space ($x^{(new)} \rightarrow y^{(new)}$?)

Next: auto-encoders fix above using supervised learning algorithm (non-linear regression) for unsupervised dimensionality reduction
Dimensionality reduction using auto-encoders

\[y \xrightarrow{g_\phi(y)} x \xrightarrow{f_\theta(x)} \hat{y} \]

- **Data**
- **Low-dim code**
- **Reconstruction**

\[x(y) = g_\phi(y) \quad \hat{y}(x) = f_\theta(x) \]
Dimensionality reduction using auto-encoders

Want to learn interesting embedding (not identity mapping)

Achieve via constraint: dimensionality

\[
\arg\min_{\theta, \phi} \sum_{n=1}^{N} ||y^{(n)} - \hat{y}^{(n)}||^2
\]
Dimensionality reduction using auto-encoders

Want to learn interesting embedding (not identity mapping)

Achieve via constraint: dimensionality, sparsity, function complexity

\[||y - \hat{y}||^2 \]

\[x(y) = g_{\phi}(y) \]
\[\hat{y}(x) = f_{\theta}(x) \]

\[\arg \min_{\theta, \phi} \sum_{n=1}^{N} ||y^{(n)} - \hat{y}^{(n)}||^2 + \text{constraints} \]
Dimensionality reduction using auto-encoders

Want to learn interesting embedding (not identity mapping)
Achieve via constraint: dimensionality, sparsity, function complexity

\[
\begin{align*}
\text{data} & \quad \text{low-dim code} & \quad \text{reconstruction} & \quad \text{cost function} \\
\mathbf{y} & \quad \mathbf{x} & \quad \hat{\mathbf{y}} & \quad \arg \min_{\theta, \phi} \sum_{n=1}^{N} \| \mathbf{y}^{(n)} - \hat{\mathbf{y}}^{(n)} \|^2 + \text{constraints} \\
g_\phi(y) & \quad f_\theta(x) & \quad \hat{\mathbf{y}} & \quad \arg \min_{\Theta, \Phi} \sum_{n=1}^{N} \| \mathbf{y}^{(n)} - \Theta \Phi \mathbf{y}^{(n)} \|^2
\end{align*}
\]

PCA:
- Linear
 \[
 \begin{align*}
 \mathbf{x} &= \Phi \mathbf{y} \\
 \dim(\Phi) &= K \times D \\
 \mathbf{\hat{y}} &= \Theta \mathbf{x} \\
 \dim(\Theta) &= D \times K
 \end{align*}
 \]
Dimensionality reduction using auto-encoders

\[\| y - \hat{y} \|^2 \]

\(y \rightarrow g_{\phi}(y) \rightarrow x \rightarrow f_{\theta}(x) \rightarrow \hat{y} \)

Want to learn interesting embedding (not identity mapping)

Achieve via constraint: dimensionality, sparsity, function complexity

Cost function

\[
\arg \min_{\theta, \phi} \sum_{n=1}^{N} \| y^{(n)} - \hat{y}^{(n)} \|^2 + \text{constraints}
\]

PCA:

- linear
 - \(x = \Phi y \)
 - \(\text{dim}(\Phi) = K \times D \)
 - \(\hat{y} = \Theta x \)
 - \(\text{dim}(\Theta) = D \times K \)

Deep neural AA:

- deep neural network
 - \(x = g_{\phi}(y) \)
 - \(\text{dim}(g_{\phi}(y)) = \Phi y \)
 - \(\text{dim}(\Phi) = K \times D \)
 - \(\hat{y} = f_{\theta}(x) \)
 - \(\text{dim}(f_{\theta}(x)) = \Theta x \)
 - \(\text{dim}(\Theta) = D \times K \)

Hinton et al Science, 2006
Dimensionality reduction using auto-encoders

Want to learn interesting embedding (not identity mapping)
Achieve via constraint: dimensionality, sparsity, function complexity
Achieve via data corruption: add noise, drop-out, transform

 Cost function
\[
\arg\min_{\theta, \phi} \sum_{n=1}^{N} \|y^{(n)} - \hat{y}^{(n)}\|^2 + \text{constraints}
\]

\[
\arg\min_{\Theta, \Phi} \sum_{n=1}^{N} \|y^{(n)} - \Theta \Phi y^{(n)}\|^2
\]

PCA: linear
\[
x = \Phi y
\]
\[
dim(\Phi) = K \times D
\]

deep neural AA: deep neural network

Hinton et al Science, 2006
Dimensionality reduction using auto-encoders

$$\|y - \hat{y}\|^2$$

$$g_\phi(y) \rightarrow x \rightarrow f_\theta(x) \rightarrow \hat{y}$$

Want to learn interesting embedding (not identity mapping)

Achieve via constraint: dimensionality, sparsity, function complexity

Achieve via data corruption: add noise, drop-out, transform

PCA:

- Linear
- $$x = \Phi y$$
- $$\dim(\Phi) = K \times D$$

deep neural AA:

- Linear
- $$\hat{y} = \Theta x$$
- $$\dim(\Theta) = D \times K$$

auto-encoders:

1. learn functions for both mappings
2. num. params. does not scale with N

Vincent, Bengio et al JMLR, 2010
Dimensionality reduction using probabilistic models: PCA

\[\text{dim}(x) = K \]
\[p(x) = \mathcal{G}(x; 0, I) \]

\[\text{dim}(y) = D \]
\[y = \theta x + \sigma \epsilon \]
\[p(\epsilon) = \mathcal{G}(\epsilon; 0, I) \]

fuzzy pancake
Dimensionality reduction using probabilistic models: PCA

\[\text{dim}(x) = K \]
\[p(x) = \mathcal{G}(x; 0, I) \]

inference
\[p(x^{(n)}|y^{(n)} \phi, \sigma) = \mathcal{G}(x^{(n)}; \phi y^{(n)}, \Sigma_{x|y}) \]

\[\text{dim}(y) = D \]
\[y = \theta x + \sigma \epsilon \]
\[p(\epsilon) = \mathcal{G}(\epsilon; 0, I) \]
Dimensionality reduction using probabilistic models: PCA

\[\text{dim}(x) = K \]
\[p(x) = \mathcal{G}(x; 0, I) \]

inference
\[p(x^{(n)}|y^{(n)}; \phi, \sigma) = \mathcal{G}(x^{(n)}; \phi y^{(n)}, \Sigma_{x|y}) \]

maximum-likelihood learning
\[\theta^{ML}, \sigma^{ML} = \arg \max_{\phi, \sigma} \sum_n \log p(y^{(n)}|\theta, \sigma) \]
\[p(y^{(n)}|\theta, \sigma) = \mathcal{G}(y^{(n)}; 0, \theta \theta^\top + \sigma^2) \]

\[\text{dim}(y) = D \]
\[y = \theta x + \sigma \epsilon \]
\[p(\epsilon) = \mathcal{G}(\epsilon; 0, I) \]

fuzzy pancake
Dimensionality reduction using probabilistic models: PCA

$$\dim(x) = K$$

$$p(x) = \mathcal{G}(x; 0, I)$$

Inference

$$p(x^{(n)} | y^{(n)}, \phi, \sigma) = \mathcal{G}(x^{(n)}; \phi y^{(n)}, \Sigma_x | y)$$

Maximum-likelihood learning

$$\theta^{ML}, \sigma^{ML} = \arg \max_{\phi, \sigma} \sum_n \log p(y^{(n)} | \theta, \sigma)$$

$$p(y^{(n)} | \theta, \sigma) = \mathcal{G}(y^{(n)}; 0, \theta \theta^\top + I \sigma^2)$$

differentiate, set to zero, find:

$$\sigma^{ML} = \frac{1}{D - K} \sum_{k=K+1}^D \lambda_k \quad E_K = [e_1, \ldots, e_K] \quad \Lambda_K = \text{diag}(\lambda_1, \ldots, \lambda_K)$$

$$\theta^{ML} = E_K \left(\Lambda_K - \sigma^2 I \right)^{1/2} R$$

Data-covariance

$$\hat{\Sigma}_y e_k = \lambda_k e_k$$

$$\hat{\Sigma}_y = \frac{1}{N} \sum_n y^{(n)} (y^{(n)})^\top$$

Eigenvectors, eigenvalues

Tipping and Bishop 1999, Roweis 1997
Dimensionality reduction using probabilistic models: a family of models

\[p(x) = \mathcal{G}(x; 0, I) \]
\[p(y|x) = \mathcal{G}(y; \theta x, D) \]

\[D = \sigma^2 I \]

train: eigenvalue problem
Dimensionality reduction using probabilistic models: a family of models

\[p(x) = \mathcal{G}(x; 0, I) \]
\[p(x_i, x_i) = \mathcal{G}(x; 0, I) \]
\[p(y_i | x) = \mathcal{G}(y_i; \theta_i x, D) \]
\[p(y_i | x) = \mathcal{G}(y_i; \theta_i^{sh} x + \theta_i^{pri} x_i, D) \]

train: eigenvalue problem
Dimensionality reduction using probabilistic models: a family of models

MODEL
- full linear factor analysis (FA)
- inter-battery FA

CLASS
- audio
- video

Factor Analysis (FA)
- Prior: $p(x) = \mathcal{G}(x; 0, I)$
- Conditional: $p(y|x) = \mathcal{G}(y; \theta x, D)$

Inter-battery FA
- Prior: $p(x), p(x_i) = \mathcal{G}(x; 0, I)$
- Conditional: $p(y_i|x) = \mathcal{G}(y_i; \theta_i^{sh} x + \theta_i^{pri} x_i, D)$

Special Linear
- PCA
- Canonical Correlation Analysis

Parameters
- $D = \sigma^2 I$
- Train: eigenvalue problem
- Train: generalised eigenvalue problem
Dimensionality reduction using probabilistic models: a family of models

- **Full linear factor analysis (FA)**
 - $p(x) = \mathcal{G}(x; 0, I)$
 - $p(y|x) = \mathcal{G}(y; \theta x, D)$

- **Special linear factor analysis (FA)**
 - $p(x_i; x) = \mathcal{G}(x_i; 0, I)$
 - $p(y_i|x) = \mathcal{G}(y_i; \theta_i^{sh} x + \theta_i^{pri} x_i, D)$

- **PCA**
 - $D = \sigma^2 I$
 - **Train**: eigenvalue problem

- **Inter-battery FA**
 - $p(x), p(x_i) = \mathcal{G}(x; 0, I)$
 - **Train**: generalised eigenvalue problem

- **Canonical correlation analysis**
 - $D = \sigma^2 I$
 - **Train**: find linear projections of y_i that max correlation
Dimensionality reduction using probabilistic models: a family of models

MODEL
- full linear
- factor analysis (FA)
- inter-battery FA
- PCA
- canonical correlation analysis
- LGSSM

CLASS
- audio
- video

formulas
- full linear factor analysis (FA): $p(x) = \mathcal{G}(x; 0, I)$
- diagonal factor analysis (FA): $p(x_i) = \mathcal{G}(x_i; 0, I)$
- inter-battery FA: $p(y|x) = \mathcal{G}(y; \theta x, D)$
- canonical correlation analysis: $p(y|x) = \mathcal{G}(y; \theta x, D)$
- LGSSM: $p(x_t|x_{t-1}) = \mathcal{G}(x_t; \Psi x_{t-1}, \Sigma)$

Linear (special) models
- PCA: $D = \sigma^2 I$
- find linear projections of y_i that max correlation

Diagonal models
- train: eigenvalue problem
- train: generalised eigenvalue problem
Dimensionality reduction using probabilistic models: a family of models

\begin{align*}
 & \text{full linear factor analysis (FA)} \\
 & p(x) = \mathcal{G}(x; 0, I) \\
 & p(y|x) = \mathcal{G}(y; \theta x, D) \\
 \text{diagonal} \\
 & \text{inter-battery FA} \\
 & p(x), p(x_i) = \mathcal{G}(x; 0, I) \\
 & p(y_i|x) = \mathcal{G}(y_i; \theta_i^{sh} x + \theta_i^{pri} x_i, D) \\
 \text{special linear} \\
 & \text{PCA} \\
 & D = \sigma^2 I \\
 & \text{train: eigenvalue problem} \\
 \text{special linear} \\
 & \text{canonical correlation analysis} \\
 & D = \sigma^2 I \\
 & \text{train: generalised eigenvalue problem} \\
 \text{special linear} \\
 & \text{slow feature analysis} \\
 & D = \sigma^2 I \\
 & \Sigma = 1 - \Psi^2 \\
 & \Psi = \text{diag}(\psi_1, \ldots, \psi_K) \\
 & \text{train: generalised eigenvalue problem} \\
 \end{align*}
Dimensionality reduction using probabilistic models: a family of models

MODEL

CLASS

full linear

factor analysis (FA)

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y|x) = \mathcal{G}(y; \theta x, D) \]

factor analysis (FA)

\[p(x), p(x_i) = \mathcal{G}(x; 0, I) \]

\[p(y_i|x) = \mathcal{G}(y_i; \theta_i^{sh} x + \theta_i^{pri} x_i, D) \]

inter-battery FA

\[p(x_t|x_{t-1}) = \mathcal{G}(x_t; \Psi x_{t-1}, \Sigma) \]

\[p(y|x) = \mathcal{G}(y; \theta x, D) \]

LGSSM

slow feature analysis

\[D = \sigma^2 I \]

\[D = \sigma^2 I \]

\[\Sigma = 1 - \Psi^2 \]

\[\Psi = \text{diag}(\psi_1, \ldots, \psi_K) \]

special linear

PCA

\[D = \sigma^2 I \]

train: eigenvalue problem

train: generalised eigenvalue problem

train: generalised eigenvalue problem

canonical correlation analysis

find linear projections of \(y_i \) that max correlation

find slowest projections of unit variance

special case

full linear
diagonal

special
linear

Factor analysis (FA)

Inter-battery FA

Latent Gaussian state space model (LGSSM)

Slow feature analysis

Audio

Video
Dimensionality reduction using probabilistic models: a family of models

- **Full linear**
 - Factor analysis (FA)
 - $p(x) = \mathcal{G}(x; 0, I)$
 - $p(y|x) = \mathcal{G}(y; \theta x, D)$
 - Inter-battery FA
 - $p(x), p(x_i) = \mathcal{G}(x; 0, I)$
 - $p(y_i|x) = \mathcal{G}(y_i; \theta_i^{sh}x + \theta_i^{pri}x_i, D)$

- **Special linear**
 - PCA
 - $D = \sigma^2 I$
 - train: eigenvalue problem
 - Canonical correlation analysis
 - $D = \sigma^2 I$
 - train: generalised eigenvalue problem
 - GP-LVM
 - multi-view GP-LVM

- **GP map**
 - $y = f(x)$

- **Special case**
 - Audio
 - Video

- **LGSSM**
 - $p(x_t|x_{t-1}) = \mathcal{G}(x_t; \Psi x_{t-1}, \Sigma)$
 - $p(y|x) = \mathcal{G}(y; \theta x, D)$

- **Slow feature analysis**
 - Find linear projections of y_i that max correlation
 - Find slowest projections of unit variance
 - $D = \sigma^2 I$
 - $\Sigma = 1 - \Psi^2$
 - $\Psi = \text{diag}(\psi_1, \ldots, \psi_K)$
 - train: generalised eigenvalue problem
 - GP-dynamical system
Dimensionality reduction using probabilistic models: a family of models

MODEL CLASS

full linear
- factor analysis (FA)

 \[p(x) = \mathcal{G}(x; 0, I) \]
 \[p(y|x) = \mathcal{G}(y; \theta x, D) \]

inter-battery FA
- canonical correlation analysis

 \[D = \sigma^2 I \]
 \[\mathbf{D} = \sigma^2 I \]

special linear
- PCA

 \[D = \sigma^2 \mathbf{I} \]

- GP-LVM

 \[y = \mathbf{f}(x) \]

- GP-LVM multi-view

 \[\Psi = \text{diag}(\psi_1, \ldots, \psi_K) \]

- GP-dynamical system

 \[\Psi = \text{diag}(\psi_1, \ldots, \psi_K) \]

other
- many e.g. ICA

 \[\Psi = \text{diag}(\psi_1, \ldots, \psi_K) \]

- information bottleneck style and content

- GP-SSM

 \[\Psi = \text{diag}(\psi_1, \ldots, \psi_K) \]
Roadmap so far...

- **PCA**
- Probabilistic Modelling
- **FA**
- **pPCA**
- Max mutual information
- Embedding methods
- Min reconstruction error
- Max variance
- Linear Gaussian
- 2nd order statistics
- Linear
Roadmap so far...

- PCA
- probabilistic modelling
- FA
- pPCA
- max mutual information
- embedding methods
- MDS
- ISOMAP
- min reconstruction error
- deep NN auto-encoder
- denoising auto-encoder
- auto-encoders
- non-linear noise-corrupted input
- auto-encoders
- non-linear
- input
- linear
- linear
- linear
- distances via local reconstruction weights
- LLE
- distances via data-graph
- ISOMAP
- Laplacian eigenmaps spectral methods
- IB-FA
- CCA
- multi-view
- time-series
- LGSSM
- SFA
- 2nd order statistics
- max variance
- embedding methods
- distances via data-graph
- MDS
- non-linear metric
- distances via data-graph
Roadmap so far...

- PCA
- probabilistic modelling
- FA
- pPCA
- max mutual information embedding methods
- MDS
- ISOMAP
- min reconstruction error
- auto-encoders
- denoising auto-encoder
- noise-corrupted input
- deep NN auto-encoder
- non-linear models
- auto-encoders
- non-linear
- multi-view GP-LVM
- non-parametric
- multi-view
- IB-FA CCA
- non-linear component models
- non-linear
- non-parametric
- IB-FA CCA
- multi-view
- GP-LVM
- MAP inference
- recognition models
- auto-encoders
- linear
- linear
- linear
- non-linear
- multi-view GP-LVM
- non-parametric
- non-linear
- non-parametric dynamical GP-LVM
- non-Gaussian
- SFA
- linear
- Gaussian
- time-series
- FA pPCA
- non-Gaussian
- max mutual information
- higher-order statistics
- ICA
- 2nd order statistics
- non-Gaussian
- max variance
- embedding methods
- MDS
- distances via data-graph
- ISOMAP
- Laplacian eigenmaps spectral methods
- non-linear metric
- distances via local reconstruction weights
- LLE
- kernel-PCA
- RKHS feature expansion
- linear
- linear
- linear
- min reconstruction error
- PCA
- probabilistic modelling
- linear
- 2nd order statistics
- higher-order statistics
- ICA
- non-parametric
- non-linear
- non-linear
- non-parametric
- non-linear
- non-parametric
- non-linear
Gaussian Process Regression Model: Recap

Generative model (like non-linear regression)

\(y(x) = f(x) + \epsilon \sigma_y \)

\(p(\epsilon) = \mathcal{N}(0, 1) \)

place GP prior over the non-linear function

\(p(f(x)|\theta) = \mathcal{GP}(0, K(x, x')) \)

"multivariate Gaussian of infinite dimension"
(any finite subset of variables are multivariate Gaussian)

\(K(x, x') = \sigma^2 \exp \left(-\frac{1}{2l^2}(x - x')^2 \right) \) (smoothly wiggling functions expected)

since the sum of two Gaussians is a Gaussian, the model induces a GP over \(y(x) \)

\(p(y(x)|\theta) = \mathcal{GP}(0, K(x, x') + I\sigma_y^2) \)
Gaussian Process Regression Model: Recap

Generative model (like non-linear regression)

\[y(x) = f(x) + \epsilon \sigma_y \]

\[p(\epsilon) = \mathcal{N}(0, 1) \]

place GP prior over the non-linear function

\[p(f(x)|\theta) = \mathcal{GP}(0, K(x, x')) \]

"multivariate Gaussian of infinite dimension"
(any finite subset of variables are multivariate Gaussian)

\[K(x, x') = \sigma^2 \exp \left(-\frac{1}{2l^2} (x - x')^2 \right) \] (smoothly wiggling functions expected)

since the sum of two Gaussians is a Gaussian, the model induces a GP over \(y(x) \)

\[p(y(x)|\theta) = \mathcal{GP}(0, K(x, x') + I\sigma^2_y) \]

multi-output regression \(y_i(x) = f_i(x) + \epsilon_i \sigma_y \)

\[p(f_i(x)|\theta) = \mathcal{GP}(0, K_i(x, x')) \]
Gaussian Process Latent Variable Model

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]
\[p(x) = \mathcal{G}(x; 0, I) \]
\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

toy example:
- 2 dimensional latents \(x \)
- 3 dimensional observed \(y \)
- sample \(f \)
- evaluate observed variables \(y \)
- corresponding to a grid of \(x \)

what does this look like?
Gaussian Process Latent Variable Model: manifold samples
Gaussian Process Latent Variable Model

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

selects position on manifold

distribution over manifolds

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

recover PCA using linear covariance

\[C(x, x') = \sum_k x_k x'_k \]

general case produces complex marginals

GP-regression with distribution over inputs (noisy/latent inputs)

Inference requires approximation...
Gaussian Process Latent Variable Model: MAP Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]
\[p(x) = \mathcal{G}(x; 0, 1) \]
\[p(y_d | x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x|y) = \arg \max_x \log p(x|y) \]
Gaussian Process Latent Variable Model: MAP Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x|y) = \arg \max_x \log p(x|y) \]

\[p(x|y) = \frac{1}{p(y)} p(y|x) p(x) \]
Gaussian Process Latent Variable Model: MAP Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]
\[p(x) = \mathcal{G}(x; 0, I) \]
\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x|y) = \arg \max_x \log p(x|y) \]
\[p(x|y) = \frac{1}{p(y)} p(y|x) p(x) \]
\[p(y|x) = \int p(y|x, f)p(f)df = \mathcal{G}(y_{1:N}; 0, \Sigma(x_{1:N})) \]

Lawrence, NIPS 2004

multi-output regression

\[y_{1:N} = [y_{1:N,1}; \ldots; y_{1:N,D}] \]
Gaussian Process Latent Variable Model: MAP Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]
\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x|y) = \arg \max_x \log p(x|y) \]
\[p(x|y) = \frac{1}{p(y)} p(y|x)p(x) \]
\[p(y|x) = \int p(y|x, f)p(f)df = \mathcal{G}(y_{1:N}; 0, \Sigma(x_{1:N})) \]

\[x_{\text{MAP}} = \arg \max_x \log p(x) - \frac{1}{2} \log \det \Sigma(x_{1:N}) - \frac{1}{2} \text{trace}(\Sigma(x_{1:N})^{-1} y_{1:N} y_{1:N}^\top) \]
Gaussian Process Latent Variable Model: MAP Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x|y) = \arg \max_x \log p(x|y) \]

\[p(x|y) = \frac{1}{p(y)} p(y|x)p(x) \]

\[p(y|x) = \int p(y|x, f)p(f)df = \mathcal{G}(y_{1:N}; 0, \Sigma(x_{1:N})) \]

\[x_{\text{MAP}} = \arg \max_x \log p(x) - \frac{1}{2} \log \det \Sigma(x_{1:N}) - \frac{1}{2} \text{trace}(\Sigma(x_{1:N})^{-1}y_{1:N}y_{1:N}^\top) \]

objective depends on:

\[||x_n|| \quad ||x_n - x_m|| \quad ||y_n - y_m|| \quad ||y_n|| \]
Gaussian Process Latent Variable Model: MAP Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d | x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x | y) = \arg \max_x \log p(x | y) \]

\[p(x | y) = \frac{1}{p(y)} p(y | x) p(x) \]

\[p(y | x) = \int p(y | x, f) p(f) df = \mathcal{G}(y_{1:N}; 0, \Sigma(x_{1:N})) \]

\[x_{\text{MAP}} = \arg \max_x \log p(x) - \frac{1}{2} \log \det \Sigma(x_{1:N}) - \frac{1}{2} \text{trace}(\Sigma(x_{1:N})^{-1} y_{1:N} y_{1:N}^\top) \]

objective depends on:

\[||x_n|| \quad ||x_n - x_m|| \quad ||y_n - y_m|| \quad ||y_n|| \]
Gaussian Process Latent Variable Model: Back-constrained Inference

\[
p(f_d) = \mathcal{GP}(f; 0, C(x, x'))
\]

\[
p(x) = \mathcal{G}(x; 0, I)
\]

\[
p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2)
\]

Lawrence et al, ICML 2006

\[
x_{\text{MAP}} = \arg \max_x p(x|y, \theta) = \arg \max_x \log p(x, y|\theta)
\]
Gaussian Process Latent Variable Model: Back-constrained Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

Lawrence et al, ICML 2006

\[x_{\text{MAP}} = \arg \max_x p(x|y, \theta) = \arg \max_x \log p(x, y|\theta) \]

after optimisation:

\[x_{\text{MAP}} = x_{\text{MAP}}(y_1:N) \text{ approximate: } x_{\text{MAP}} \approx g_\phi(y_1:N) \]

recognition model or back-constraint
Gaussian Process Latent Variable Model: Back-constrained Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{MAP} = \arg \max_x p(x|y, \theta) = \arg \max_x \log p(x, y|\theta) \]

after optimisation:

\[x_{MAP} = x_{MAP}(y_{1:N}) \quad \text{approximate:} \quad x_{MAP} \approx g_\phi(y_{1:N}) \]

learn using same objective as before:

\[\phi = \arg \max_{\phi} p(x = g_\phi(y_{1:N})|y, \theta) = \arg \max_{\phi} \log p(x = g_\phi(y_{1:N}), y|\theta) \]
Gaussian Process Latent Variable Model: Back-constrained Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

Lawrence et al, ICML 2006

\[x_{MAP} = \arg \max_x p(x|y, \theta) = \arg \max_x \log p(x, y|\theta) \]

after optimisation:

\[x_{MAP} = x_{MAP}(y_{1:N}) \quad \text{approximate:} \quad x_{MAP} \approx g_\phi(y_{1:N}) \]

learn using same objective as before:

\[\phi = \arg \max_{\phi} p(x = g_\phi(y_{1:N})|y, \theta) = \arg \max_{\phi} \log p(x = g_\phi(y_{1:N}), y|\theta) \]

learn hyper-parameters using zero-temperature EM

\[\theta = \arg \max_{\theta} \log p(y|\theta) \approx \arg \max_{\theta} \log p(x = g_\phi(y_{1:N}), y|\theta) \]
Gaussian Process Latent Variable Model: Back-constrained Inference

\[p(f_d) = \mathcal{G}\mathcal{P}(f; 0, C(x, x')) \]

\[p(x) = \mathcal{G}(x; 0, I) \]

\[p(y_d | x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

Lawrence et al, ICML 2006

\[x_{\text{MAP}} = \arg \max_x p(x | y, \theta) = \arg \max_x \log p(x, y | \theta) \]

after optimisation:

\[x_{\text{MAP}} = x_{\text{MAP}}(y_{1:N}) \quad \text{approximate: } x_{\text{MAP}} \approx g_\phi(y_{1:N}) \]

learn using same objective as before:

\[\phi = \arg \max_\phi p(x = g_\phi(y_{1:N}) | y, \theta) = \arg \max_\phi \log p(x = g_\phi(y_{1:N}), y | \theta) \]

learn hyper-parameters using zero-temperature EM

\[\theta = \arg \max_\theta \log p(y | \theta) \approx \arg \max_\theta \log p(x = g_\phi(y_{1:N}), y | \theta) \]
Gaussian Process Latent Variable Model: Back-constrained Inference

\[p(f_d) = \mathcal{GP}(f; 0, C(x, x')) \]
\[p(x) = \mathcal{G}(x; 0, I) \]
\[p(y_d|x, f_d) = \mathcal{G}(y; f_d(x), \sigma^2) \]

\[x_{\text{MAP}} = \arg \max_x p(x|y, \theta) = \arg \max_x \log p(x, y|\theta) \]

after optimisation:
\[x_{\text{MAP}} = x_{\text{MAP}}(y_{1:N}) \quad \text{approximate:} \quad x_{\text{MAP}} \approx g_\phi(y_{1:N}) \]

learn using same objective as before:
\[\phi = \arg \max_\phi p(x = g_\phi(y_{1:N})|y, \theta) = \arg \max_\phi \log p(x = g_\phi(y_{1:N}), y|\theta) \]

learn hyper-parameters using zero-temperature EM
\[\theta = \arg \max_\theta \log p(y|\theta) \approx \arg \max_\theta \log p(x = g_\phi(y_{1:N}), y|\theta) \]
Gaussian Process Latent Variable Model: Application

Chen, Kim and Cipolla, IEEE 13th Int. Conf. on Computer Vision, 2011 and https://www.youtube.com/watch?v=X5Z7ZJ39zAA
Probabilistic inference as an auto-encoder

\[p(x|\theta) \]

\[p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood

\[\mathcal{L}(\theta) = \log p(y|\theta) \]
Probabilistic inference as an auto-encoder

\[p(x | \theta) \]

\[p(y | x, \theta) = \mathcal{G}(y; f_{\theta}(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood

\[\mathcal{L}(\theta) = \log p(y | \theta) = \log \int p(y, x | \theta) dx = \log \int \frac{q(x)}{q(x)} p(x, y | \theta) dx \]
Probabilistic inference as an auto-encoder

$p(x|\theta)\]

$p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I)$

Goal: learn parameters via approximate maximum-likelihood

\[
\mathcal{L}(\theta) = \log p(y|\theta) = \log \int p(y, x|\theta)dx = \log \int \frac{q(x)}{q(x)} p(x, y|\theta)dx
\]

\[
\mathcal{L}(\theta) \geq \int q(x) \log \frac{1}{q(x)} p(y, x|\theta)dx = \mathcal{F}(q, \theta)
\]

Jensen's inequality

free-energy
Probabilistic inference as an auto-encoder

\[
\begin{align*}
 x & \quad p(x|\theta) \\
 y & \quad p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I)
\end{align*}
\]

Goal: learn parameters via approximate maximum-likelihood

\[
\mathcal{L}(\theta) = \log p(y|\theta) = \log \int p(y, x|\theta)dx = \log \int \frac{q(x)}{q(x)} p(x, y|\theta)dx
\]

Jensen's

\[
\mathcal{L}(\theta) \geq \int q(x) \log \frac{1}{q(x)} p(y, x|\theta)dx = \mathcal{F}(q, \theta) \quad \text{free-energy}
\]

\[
\mathcal{F}(q, \theta) = \int q(x) \log p(y|x, \theta)dx + \int q(x) \log \frac{p(x|\theta)}{q(x)} dx
\]
Probabilistic inference as an auto-encoder

\[x \quad p(x|\theta) \]

\[y \quad p(y|x, \theta) = G(y; f_\theta(x), \sigma^2I) \]

Goal: learn parameters via approximate maximum-likelihood

\[\mathcal{L}(\theta) = \log p(y|\theta) = \log \int p(y, x|\theta)dx = \log \int \frac{q(x)}{q(x)}p(x, y|\theta)dx \]

Jensen's inequality:

\[\mathcal{L}(\theta) \geq \int q(x) \log \frac{1}{q(x)}p(y, x|\theta)dx = \mathcal{F}(q, \theta) \]

\[\mathcal{F}(q, \theta) = \int q(x) \log p(y|x, \theta)dx + \int q(x) \log \frac{p(x|\theta)}{q(x)}dx \]

\[\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \langle||y - f_\theta(x)||^2\rangle_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x)||p(x)) \]
Probabilistic inference as an auto-encoder

\[p(x|\theta) \]

\[p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood free-energy reconstruction cost soft-constraint

\[\mathcal{L}(\theta) = \log p(y|\theta) = \log \int p(y, x|\theta)dx = \log \int \frac{q(x)}{q(x)} p(x, y|\theta)dx \]

Jensen's inequality:

\[\mathcal{L}(\theta) \geq \int q(x) \log \frac{1}{q(x)} p(y, x|\theta)dx = \mathcal{F}(q, \theta) \]

\[\mathcal{F}(q, \theta) = \int q(x) \log p(y|x, \theta)dx + \int q(x) \log \frac{p(x|\theta)}{q(x)} dx \]

reconstruction cost soft-constraint

\[\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \langle ||y - f_\theta(x)||^2 \rangle_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x) \| p(x)) \]
Probabilistic inference as an auto-encoder

\[p(x|\theta) \]

\[p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood flavours of variational inference:

\[\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \langle \|y - f_\theta(x)\|^2 \rangle_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x)\|p(x)) \]

reconstruction cost soft-constraint
Probabilistic inference as an auto-encoder

\[p(x|\theta) \]

\[p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood flavours of variational inference:

fixed family \[q(x) = \mathcal{G}(x; \mu_q, \Sigma_q) \]

\[
\arg \max_{\theta, \mu_q, \Sigma_q} \mathcal{F}(\mu_q, \Sigma_q, \theta)
\]

reconstruction cost

\[
\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \langle \| y - f_\theta(x) \|^2 \rangle_q - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x)||p(x))
\]
Probabilistic inference as an auto-encoder

\[p(x|\theta) \]

\[p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood flavours of variational inference:

fixed family \[q(x) = \mathcal{G}(x; \mu_q, \Sigma_q) \]

structured \[q(x) = \prod_{k=1}^{K} q_k(x_k) \]

\[
\begin{aligned}
\mathcal{F}(q, \theta) &= -\frac{1}{2\sigma^2} \langle \| y - f_\theta(x) \|^2 \rangle_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x) || p(x)) \\
\end{aligned}
\]
Probabilistic inference as an auto-encoder

\[p(x|\theta) \]

\[p(y|x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 I) \]

Goal: learn parameters via approximate maximum-likelihood flavours of variational inference:

- **fixed family**
 \[q(x) = \mathcal{G}(x; \mu_q, \Sigma_q) \]
 \[\arg \max_{\theta, \mu_q, \Sigma_q} \mathcal{F}(\mu_q, \Sigma_q, \theta) \]

- **structured**
 \[q(x) = \prod_{k=1}^{K} q_k(x_k) \]
 \[\arg \max_{\{q_k(x)\}_{k=1}^{K}, \theta} \mathcal{F}(\{q_k(x)\}_{k=1}^{K}, \theta) \]

- **recognition model**
 \[q_\phi(x) = \mathcal{G}(x; \mu_\phi(y), \Sigma_\phi(y)) \]
 \[\arg \max_{\phi, \theta} \mathcal{F}(\phi, \theta) \text{ variational auto-encoder} \]

reconstruction cost
\[\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \langle \|y - f_\theta(x)\|^2 \rangle_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x)||p(x)) \]

soft-constraint
\[\mathcal{L}(\theta) \]
Probabilistic inference as an auto-encoder

Goal: learn parameters via approximate maximum-likelihood flavours of variational inference:

- **fixed family**
 \[q(x) = \mathcal{G}(x; \mu_q, \Sigma_q) \]
 \[\arg \max_{\theta, \mu_q, \Sigma_q} \mathcal{F}(\mu_q, \Sigma_q, \theta) \]

- **structured**
 \[q(x) = \prod_{k=1}^{K} q_k(x_k) \]
 \[\arg \max_{\{q_k(x)\}_{k=1}^{K}, \theta} \mathcal{F}(\{q_k(x)\}_{k=1}^{K}, \theta) \]

- **recognition model**
 \[q_\phi(x) = \mathcal{G}(x; \mu_\phi(y), \Sigma_\phi(y)) \]
 \[\arg \max_{\phi, \theta} \mathcal{F}(\phi, \theta) \]

variational auto-encoder

GP-LVM:
\[q_\phi(x) = \delta(x - g_\phi(y)) \]

reconstruction cost
\[\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \langle \|y - f_\theta(x)\|^2 \rangle_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x)\|p(x)) \]
Probabilistic inference as an auto-encoder

\[p(x | \theta) \]

\[p(y | x, \theta) = \mathcal{G}(y; f_\theta(x), \sigma^2 \mathbf{I}) \]

Goal: learn parameters via approximate maximum-likelihood

flavours of variational inference:

- fixed family
 \[q(x) = \mathcal{G}(x; \mu_q, \Sigma_q) \]
 \[\arg \max_{\theta, \mu_q, \Sigma_q} \mathcal{F}(\mu_q, \Sigma_q, \theta) \]

- structured
 \[q(x) = \prod_{k=1}^{K} q_k(x_k) \]
 \[\arg \max_{\{q_k(x)\}_{k=1}^{K}, \theta} \mathcal{F}(\{q_k(x)\}_{k=1}^{K}, \theta) \]

- recognition model
 \[q_\phi(x) = \mathcal{G}(x; \mu_\phi(y), \Sigma_\phi(y)) \]
 \[\arg \max_{\phi, \theta} \mathcal{F}(\phi, \theta) \]

reconstruction cost

\[\mathcal{F}(q, \theta) = -\frac{1}{2\sigma^2} \mathbb{E}[\|y - f_\theta(x)\|^2]_{q(x)} - \frac{D}{2} \log \sigma^2 - \text{KL}(q(x) \| p(x)) \]

GP-LVM:

\[q_\phi(x) = \delta(x - g_\phi(y)) \]
Dimensionality reduction: conceptual space

- PCA
- probabilistic modelling
- FA
- pPCA
- max mutual information
- embedding methods
- MDS
- ISOMAP
- min reconstruction error
- auto-encoders
- deep NN auto-encoder
- denoising auto-encoder
- noise-corrupted input
- multi-view
- GP-LVM
- non-parametric
- recognition models
- linear NN recognition models
- non-linear NN recognition models
- multi-view GP-LVM
- non-linear component models
- IB-FA
- CCA
- non-parametric
- linear Gaussian component models
- PCA
- FA
- pPCA
- non-linear component models
- LGSSM
- SFA
- non-parametric
- dynamical GP-LVM
- ICA
- higher-order statistics
- 2nd order statistics
- time-series
- non-Gaussian
- non-Gaussian component models
- MAP inference
- recognition models
- MAP inference
- deep NN recognition models
- non-linear recognition models
- k-PCA
- RKHS feature expansion
- kernel-PCA
- max variance
- embedding methods
- non-linear embedding methods
- MDS
- distances via data-graph
- ISOMAP
- Laplacian eigenmaps
- spectral methods
- LLE
- distances via local reconstruction weights
- non-linear metric
- local reconstruction weights